


To this end, we propose Active Adversarial Domain

Adaptation (AADA) that exploits the relation between do-

main adaptation and active learning to answer those ques-

tions. Addressing our second question, we propose to adopt

domain adversarial learning [13] between the union of la-

beled data from source/target and unlabeled target data,

when the amount of labeled target data is small. However,

after several rounds of active selection to accumulate many

labeled data from the target domain, performing adversarial

adaptation becomes counter-productive and simple transfer

learning approaches (e.g., fine-tuning) serve the purpose.

Inspired by the importance weighted empirical risk min-

imization [58, 59], we address our first question by propos-

ing a sample selection criterion composed of the two cues:

the diversity cue and the uncertainty cue. The diversity

cue is from the importance w(x)= pT (x)/pS(x) where it

can be estimated efficiently from the domain discriminator

based on domain adversarial learning [15]. This allows one

to sample unlabeled targets that are different from the la-

beled ones. The uncertainty cue is a lower bound to the

empirical risk, which in our case is in the form of entropy

of classification distribution. This promotes unlabeled data

with low confidence for the next round of annotation. The

overall framework of our AADA is illustrated in Figure 1.

In experiments, we first validate the effectiveness of our

approach on digit classification from SVHN to MNIST in

Section 4, showing significant improvements over other

baselines on domain adaptation, transfer learning, and ac-

tive learning. Second, we conduct experiments for object

recognition on the Office [50] and VisDA [43] datasets

with larger domain shifts in Section 5. Last, we extend

our method to object detection, adapting from the KITTI

dataset [14] to the Cityscapes dataset [9]. The proposed

AADA outperforms the fine-tuning baseline by 6% when

only 50 labeled images from the target domain are avail-

able.

Finally, we summarize our contributions as follows:

• An active learning framework by integrating domain

adversarial learning and active learning for continuous

semi-supervised domain adaptation.

• Improved classification performance with domain ad-

versarial learning, while the discriminator prediction

yields better importance weight for sampling.

• A connection between our sampling method and im-

portance weight with domain adversarial training.

• Reduced labeling cost on target domain on object clas-

sification and detection tasks.

2. Related Work

2.1. Domain Adaptation

Domain adaptation (DA) aims to make the model invari-

ant to the data from the source and target domain. For exam-

ple, [10] uses unlabeled data to measure the inconsistency

between source and target domain classifiers. Deep domain

adaptation has been successful in recent years. The key idea

is to measure the domain discrepancy at a certain layer of

deep networks using domain discriminator [4, 13] or maxi-

mum mean discrepancy (MMD) kernel [36, 37, 63, 65] and

train CNNs to reduce the discrepancy. Approaches that

combine techniques from semi-supervised learning, such

as entropy minimization [16, 31], are proposed to enhance

classification performance [37, 71]. It has also been ap-

plied to more complicated vision tasks such as object detec-

tion [7, 23, 21] and semantic segmentation [18, 19, 61, 62],

where the annotation cost is more expensive and how to se-

lect images to label become more crucial.

Different from the above-mentioned unsupervised DA,

we explore the case where the budget is available to anno-

tate a few labeled examples in the target domain. Compar-

ing to the method of [40] which discusses how to train the

model given few labeled targets with uniform distribution,

we focus on how to select target samples to label without

knowing any prior distribution of the target labels.

2.2. Active Learning

Active learning aims to maximize the performance with

a limited annotation budget [8, 55]. Thus, the challenge is to

quantify the informativeness of unlabeled data [27] so that

they are maximally useful when annotated. Many sampling

strategies based on uncertainty [32, 53], diversity [11, 20],

representativeness [68], reducing expected error [48, 67]

and maximizing expected label changes [12, 25, 66] are

studied and applied to vision tasks such as classification [45,

24], object detection [26], image segmentation [38, 60, 66],

and human pose estimation [35]. Among these, uncertainty

sampling is simple and computationally efficient, making it

a popular strategy in real-world applications.

Learning-based active learning methods [22, 29] are pro-

posed recently by formulating a regression problem for the

query procedure and learning strategies based on previous

outcomes. Deep active learning methods [54, 57] are stud-

ied for image classification and named-entity recognition.

[39, 72] propose to use generative models to synthesize data

for training, but the performance is largely dependent on the

quality of synthetic data, limiting their generality.

2.3. Active Learning for Domain Adaptation

Different from the aforementioned methods, we aim to

unify active learning and domain adaptation. Chattopad-

hyay et al. [6] train the domain adaptation model with im-

portance weights [2] and select samples by solving linear

programming for minimizing the MMD distances between

features. However, it is not clear how to incorporate this

strategy with advanced techniques such as deep models and

domain adversarial training.
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Algorithm 1 AADA

Input: labeled source Ls; unlabeled target Ut;

labeled target Lt = ∅; budget per round b
Model:M={Gf , Gy , Gd}; feature extractor Gf ;

class predictor Gy; discriminator Gd

TrainM with (Ls, Ut)
for round← 1 to MaxRound do

Compute s(x) ∀x ∈ Ut via (5)

Select a set of b images z from Ut according to s(z)
Get labels yz from oracle

Lt ← Lt ∪ (z, yz)
Ut ← Ut \ (z, yz)
TrainM with (Ls ∪ Lt, Ut)

resolve the second issue. Note that, with adversarial train-

ing, the optimal discriminator [15] is obtained at

G∗
d(x̂)=

pS(x)

pS(x)+ pT (x)
⇒ w(x)=

1−G∗
d(x̂)

G∗
d(x̂)

, (4)

where x̂=Gf (x). Next, assuming cross-entropy as an em-

pirical risk, we resolve the first issue by measuring the en-

tropy of unlabeled data, which is a lower bound to the cross-

entropy.1 Finally, our sample selection criterion s(x) for

unlabeled target data is written as follows:

s(x) =
1−G∗

d(Gf (x))

G∗
d(Gf (x))

H(Gy(Gf (x))). (5)

Two components in the measure are interpreted as follows:

1) diversity cue (1−G∗
d(Gf (x)))/G

∗
d(Gf (x)), and 2) un-

certainty cue H(Gy(Gf (x))). The diversity cue allows us

to select unlabeled target data which is less similar to the la-

beled ones in the source domain, while the uncertainty cue

suggests data that the model cannot predict confidently.

3.3. Active Adversarial Domain Adaptation

Based on the two objectives of domain adaptation and

sample selection, we explain the role of these two compo-

nents in their collaboration for active learning for domain

adaptation purposes.

Collaborative Roles. For domain adaptation, the goal is to

learn domain-invariant features via (2) that better serves as

a starting point for the next sample selection step. During

the adversarial learning process, a discriminator is learned

to separate source and target data, and thus we can utilize its

output prediction as an indication for selection via the im-

portance weight in (5). By iteratively performing adversar-

ial learning and active learning, the proposed method grad-

ually selects informative samples for annotations guided by

the domain discriminator, and then these selected samples

1H(p, q)=DKL(p||q)+H(p)≥H(p).

are used for supervised training to minimize the domain

gap, in a collaborative manner.

One may still obtain a discriminator without adversar-

ial learning and it can be easily learned to separate samples

across two different domains. However, learning a discrim-

inator in this way can be problematic for active learning.

First, this discriminator may give identically high scores to

most target samples. Thus it lacks the capability of selecting

informative ones. Moreover, the learned classifier and this

discriminator may focus on different properties if they are

not learned jointly. If this is the case, the informative sam-

ples that current discriminator selects are not necessarily

beneficial for classifier update. We provide more evidence

for the necessity of adversarial training in Section 4.3.

Active Learning Process. Our overall active learning

framework is illustrated in Figure 2. We start our AADA al-

gorithm by learning a DANN model in an unsupervised do-

main adaptation setting as described in Section 3.1, and then

use the learned discriminator to perform the initial round of

sample selection from all unlabeled target samples based

on (5). Once obtaining the selected samples, we acquire

their ground-truth labels.

For the following rounds, we have a small set of la-

beled target data Lt∼ pT (x, y), a set of labeled source

data Ls∼ pS(x, y), and the remaining unlabeled target data

Ut∼ pT (x). Thus, the learning setting is different from the

initial stage as we now have labeled domains Ls and Lt. To

accommodate labeled data from both domains, we revisit

an analysis of domain adaptation [1, 3] whose generaliza-

tion bound is given as:

ǫT (ĥ) ≤ ǫT (h
∗
T ) + γα + dH∆H(Ls ∪Lt, Ut) (6)

+ 4

√

(

α2
s

βs

+
α2
t

βt

)(

d log(2m)− log(δ)

2m

)

,

with γα = ǫT (h)+αsǫS(h)+αtǫT (h), m is the number of

labeled examples, d is VC-dimension of hypothesis class

and h is the hypothesis (i.e., classifier). α=(αs, αt) is a

weight vector between the errors of labeled source and la-

beled target, while β=(βs, βt) is a proportion of labeled

examples for source and target domains. Assuming zero er-

ror on the labeled examples (i.e., ǫS(h)= ǫT (h)= 0), the

bound is the tightest when αs =βs and αt =βt.

This leads us training a new model that adapts from

all labeled data Ls ∪Lt to unlabeled data Ut with uniform

sampling of individual examples from labeled set to ensure

the tightest bound. Thus, we use uniform sampling of la-

beled source and target examples for sampling batches dur-

ing training unless otherwise stated. Then, we select candi-

dates from the remaining unlabeled target set Ut based on

the new discriminator Gd and new classifier Gy following

the same importance sampling strategy for the next round

of training. The overall algorithm is shown in Algorithm 1.
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4. Experiments on Digit Classification

As discussed above, our proposed method aims to ad-

dress two questions: 1) how to select images to label from

Ut to yield the most performance gain? and 2) how to train

a classifier given {Ls, Lt, Ut}? Our experiments then con-

sists of our explorations for both components. In this sec-

tion, we first perform detailed experiments in a mix-and-

match way on the digit classification task from SVHN [41]

to MNIST [30]. Specifically, we explore the following

training schemes:

1) Adversarial Training: we train the classifier via (2) us-

ing (Ls ∪ Lt, Ut).

2) Joint Training: we train the classifier in a supervised

way using Ls ∪ Lt. Note that we still train a discriminator

for sample selection but without adversarial training.

3) Fine-tuning: we train a classifier using Ls and then fine-

tune it on Lt, both in a supervised way. Discriminator is

trained in a similar manner to Joint Training.

4) Target Only: we train our classifier with Lt only.

The sampling strategies we explored are:

1) Importance Weight: we select samples based on the

proposed importance weight s(x) (5).

2) K-means Clustering: we perform k-means clustering

on image features Gf (x), ∀x ∈ Ut, where the number of

clusters is set to b in each round. For each cluster, we select

one sample which is the closest to its center.

3) K-center (Core-set) [54]: we use greedy k-center clus-

tering to select b images z from Ut such that the largest dis-

tance between unlabeled data Ut \ z and labeled data Lt ∪ z
is minimized. We use L2 distance between image features

Gf (x) for the measurement.

4) Diversity [11]: for each unlabeled sample in Ut, we com-

pute its distance to all samples in Lt and obtain the average

distance. Then we rank unlabeled samples w.r.t. its average

distance in descending order and select the top b samples.

L2 distance is applied on features Gf (x).

5) Best-versus-Second Best (BvSB) [24]: we use the dif-

ference between the highest and the second highest class

prediction as the uncertainty measure., i.e., maxi Gyi
(x̂)−

Gyj
(x̂), where class j has the second highest prediction.

6) Random Selection: we select samples uniformly at ran-

dom from all the unlabeled target data Ut.

Our AADA uses importance weight for sample selec-

tion, and adversarial training as the training scheme. We

note that other unsupervised DA methods can be orthogo-

nal to our approach, e.g., one can use improved DANN such

as CyCADA [18] for initialization but still use our criteria

for selecting samples to label. Here we focus on sample

selection and only use the vanilla adversarial training. We

also note that different sampling methods do not compete

with AADA as they can be combined with our method. For

example, BvSB can be used as an alternative uncertainty

measurement as opposed to entropy in (5).

Experimental Setting. Commonly in the active learning

literature [38, 60], we simulate oracle annotations by us-

ing the ground-truth in all our experiments. We consider an

adaptation task from SVHN to MNIST, where the former

and latter are initially considered as labeled source Ls and

unlabeled target Ut respectively. SVHN contains 73,257

RGB images and MNIST consists of 60,000 grayscale im-

ages, both from the digit classes of 0 to 9. Not only dif-

fer in color statistics, the images from two datasets also

experience different local deformations, making the adap-

tation task challenging. For this task, we use the variant

of LeNet architecture [18] and add an entropy minimiza-

tion loss Lent = H(Gy(Gf (x)) for regularization [37]

during training. For each round, we train the model for

60 epochs using Adam [28] optimizer with learning rate

{2 × 10−4, 1 × 10−4, 5 × 10−5} for 20 epochs each. The

batch size is 128 and λ = 0.1. We set budget to 10 in each

round and perform 30 rounds, eventually selecting 300 im-

ages in total from the target domain. We carry our experi-

ments with five different random seeds and report the aver-

aged accuracy after each round. We use PyTorch [42] for

our implementation.

4.1. Comparison of Sampling Methods

We start from comparing different sampling method

combined with adversarial training. As shown in Figure 3a,

importance weight often outperforms its active sampling

counterparts. It can achieve 95% accuracy with 160 samples

after 16 rounds while the random selection baseline requires

two times more annotations to have similar performance.

Moreover, our proposed method consistently improves per-

formance when more samples are selected and annotated,

whereas other baselines generate unstable performances.

One reason for such observation is that the class distribu-

tion of the selected samples in each round is not uniform. If

the selected targets are heavily biased towards few classes,

the “mode collapse” issue due to adversarial training gives

high test accuracy on those classes but low accuracy on oth-

ers, causing the overall lower accuracy. However, sampling

with importance weight makes the result more stable after

each round. As a reference, AADA performs similarly as

random selection (97.5% accuracy) with 1000 labeled tar-

gets. The performance saturates at around 99.0% accuracy

with 5000 labeled targets and achieves 99.5% accuracy with

all 73,257 labeled targets.
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